Monotone k-Submodular Function Maximization with Size Constraints

نویسندگان

  • Naoto Ohsaka
  • Yuichi Yoshida
چکیده

A k-submodular function is a generalization of a submodular function, where the input consists of k disjoint subsets, instead of a single subset, of the domain. Many machine learning problems, including influence maximization with k kinds of topics and sensor placement with k kinds of sensors, can be naturally modeled as the problem of maximizing monotone k-submodular functions. In this paper, we give constant-factor approximation algorithms for maximizing monotone ksubmodular functions subject to several size constraints. The running time of our algorithms are almost linear in the domain size. We experimentally demonstrate that our algorithms outperform baseline algorithms in terms of the solution quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On maximizing a monotone k-submodular function subject to a matroid constraint

A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...

متن کامل

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms

Constrained submodular maximization problems have long been studied, most recently in the context of auctions and computational advertising, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less well understood: the first approximation algorithms even for the unconstrained setting were gi...

متن کامل

Constrained Maximization of Non-Monotone Submodular Functions

The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015